AZO-HYDRAZONE TAUTOMERISM OF HYDROXYAZO COMPOUNDS—A REVIEW

P. Ball and C. H. Nichollst

School of Textile Technology, University of New South Wales, P.O. Box 1, Kensington 2033, New South Wales, Australia

(Received: 8 June, 1981)

SUMMARY

The phenomenon of azo-hydrazone tautomerism of hydroxyazo compounds is reviewed in relation to structural factors such as the degree of annellation and the type and position of substituents, as well as environmental factors which are determined by the medium containing the tautomeric entity. Media effects are discussed with reference to studies in solution, polymeric substrates, the crystalline solid state and the gas phase. The influence of the state of the tautomeric equilibrium on the chemical reactivity is considered with an emphasis on the practically important aspects of photochemistry and acid-base behaviour of tautomeric hydroxyazo dyestuffs.

1. INTRODUCTION

Following the discovery in 1870 of the now well-known coupling reaction between diazonium salts and phenols, the coloured products were believed to be hydroxyazo compounds. The first challenge to this view was made in 1883 by Liebermann² who postulated that the hydroxyl proton of 1-phenylazo-2-naphthol, II(R = H), was labile and could be capable of bonding with a nitrogen atom of the azo group. Evidence to support Liebermann's assertion came the following year when Zincke and Bindewald³ reported that they obtained the same product either by coupling the benzene diazonium ion with 1-naphthol or by condensing phenylhydrazine with 1,4-naphthoquinone. The exact nature of this product led to much heated debate since there was clear chemical evidence for both hydroxyl and carbonyl functionality (e.g. refs. 4-6). Eventually Kuhn and Bär⁷ proved the

[†] Author to whom correspondence should be addressed.

$$HO \longrightarrow N \xrightarrow{N} \stackrel{*}{\longrightarrow} Q \longrightarrow N \xrightarrow{NH} \stackrel{*}{\longrightarrow} R$$

I 4-Phenylazo-I-naphthol

existence of a rapidly formed tautomeric equilibrium of the type I(R=H) between the azo and hydrazone forms. It is now known that this equilibrium is influenced by both structural factors within the molecule and by the nature of the medium surrounding the molecule.

The possibility of a zwitterionic structure IA for I(R = H) was suggested by Millefiori ct al. 8 to account for the high experimental values of its dipole moment.

Infrared spectra of I(R=H) and II(R=H) have also suggested zwitterionic structures. However, Goursot ct al. concluded from molecular orbital calculations, supported by experimental evidence, that such a species did not exist.

The phenomenon of azo-hydrazone tautomerism has been the subject of much research and is well documented in the literature. Several reviews dealing with work up to 1972 have been published. 6.9.11 This report essentially covers the period 1970–1980.

2. STRUCTURAL FACTORS

The state of the tautomeric equilibrium for ortho and para hydroxyazo compounds is primarily determined by structural factors within the molecule. Millefiori et al.¹² reported that certain derivatives of II were essentially azo compounds, but a number of studies^{9,13-17} have indicated that the presence of a strong intramolecular H-bond in the ortho derivatives, e.g. II and III, has the effect of favouring the hydrazone tautomer and of stabilizing the equilibrium against external influences such as a change of solvent. No such stabilization is possible in the case of the para derivatives, e.g. I, and this tends to render the equilibrium of these compounds much more susceptible to the influence of environmental factors.^{14,16,17}

$$\begin{array}{c}
O-H \\
N
\end{array}$$

Il 1-Phenylazo-2-naphthol

III 2-Phenylazo-1-naphthol

The position and nature (electron withdrawing or releasing) of substituents can also have a bearing on the state of the tautomeric equilibrium. Both experimental results (e.g. ref. 13) and theoretical considerations have indicated that there is a general tendency for electron withdrawing groups R (see I, II, III) to stabilize the hydrazone tautomer. An early explanation by Burawoy et al. attributed this to the fact that the C*—NH bond (see, I, II, III) of the hydrazone form is more polarizable than the C*—NN bond of the azo tautomer. Thus an electron deficiency at C* (caused by an electron withdrawing substituent R) would favour the adoption of the hydrazone form. More recently, Kishimoto et al. pointed out that the azo group (—N=N—) is an electron acceptor whereas the imino group (—NH—) is an electron donor. Thus an electron donating substituent R (see I, II, III) stabilizes the azo tautomer and the hydrazone tautomer is favoured if R is an electron withdrawer.

However, in the case of I, R = ortho substituent, the hydrazone form is present in lower concentrations than expected. This discrepancy has been explained by steric hindrance which prevents the —NH— group of the hydrazone tautomer from participating in H-bonding with suitable solvents. Instead, the —OH group of the azo form becomes H-bonded to the solvent. ¹⁴

Normally, derivatives of II in which R is a strong electron releasing group in the para position exist mainly as azo compounds, 20,21 but deviations from this general observation have been documented. For example, Kostyuchenko et al. 21 examined a number of azo dyes of general structure IV and found that certain substituents such as —OH, —COOH, —CONH₂, —CONHC₆H₄OCH₃ (R' in IV) stabilized the hydrazone tautomer by intramolecular H-bonding to the carbonyl group.

$$\begin{array}{c|c}
R' & OH \\
N & N & N \\
N & N & N$$

Intramolecular H-bonding is also responsible for the stabilization of the azo forms of V and VI.9

Compounds such as VII and VIII are true azo compounds, probably as a consequence of the fact that a hydrazone structure cannot form without completely removing the aromatic character of the naphthalene system.¹¹

Theoretical considerations have shown that the hydrazone form of a tautomeric system becomes progressively more stable as the size of the ring system bearing the O atom increases. ¹⁸ Thus it is found experimentally that phenylazoanthrols, e.g. IX,

exist solely as hydrazones.^{9,11,21} Although some workers^{6,9,11,22-24} have maintained that phenylazophenols are true azo compounds and cannot be observed as hydrazones, it is now widely accepted that these compounds are subject to the same substituent effects as described for phenylazonaphthols, although they are less susceptible to these effects.^{25,26}

A theoretical analysis of the structure of o-hydroxyazobenzene, X, has acknowledged the likelihood of the tautomeric equilibrium $X \rightleftharpoons XI$.²⁷

$$\begin{array}{c|c}
 & HO \\
 & N \\
 & X
\end{array}$$

$$\begin{array}{c|c}
 & NH \\
 & NI
\end{array}$$

In addition, Rau²⁸ detected weak fluorescence in solutions of o- and p-hydroxyazobenzene which indicated that small concentrations of the hydrazone tautomer were present. (It has been demonstrated that the azo tautomers are non-fluorescent in most cases,²⁹ and emission is due solely to the hydrazone forms,^{28,30,31} although Nurmukhametov et al.³² claimed that a bipolar ion (e.g. XII) was responsible for fluorescence.)

For some time it has been accepted that certain sterically hindered azophenol compounds of general structure XIII show a tendency to adopt a quinoid hydrazone form XIV, which is enhanced by electron withdrawing substituents R.^{9,11} However, Hofer and Huffmann²⁵ did not find steric hindrance to be a necessary criterion for

$$(CH_3)_3C$$
 HO
 N
 N
 $(CH_3)_3C$
 $(CH$

hydrazone formation. They reported that the equilibrium $XV \rightleftharpoons XVI$ was influenced by an electron 'push-pull' due to substituents. The hydrazone form XVI was stabilized by R' being an electron withdrawer and R an electron releaser, whereas reversing this situation favoured the azo tautomer XV.²⁵

Subsequently. Juwick and Sundby²⁶ found that the equilibrium of 4-(2',4'-dinitrophenylazo)alkylphenols could be influenced so as to favour predominantly the hydrazone tautomer, e.g. XVII. This was accomplished by ensuring the presence of one or two alkyl groups *ortho* to the hydroxyl group. Chelate bonding of the —NH— proton with the 2'-NO₂ group is likely.²⁵

$$O_2N$$
 NO_2
 R
 R
 R
 R
 R
 R
 R
 R
 R

An interesting result was obtained by Jacques et al.³³ who observed symmetrical dimethoxy derivatives of 4-hydroxyazobenzene using UV, ¹H and ¹³C NMR techniques. Compound XVIII was found to be exclusively hydrazone while XIX existed as an azo compound.

A number of theoretical studies concerned with conformational analysis of tautomeric systems have been published. The Hückel molecular orbital (HMO) method was used by Gribov $et\ al.^{34}$ to calculate the ratios of absorption band maxima for the tautomers of three hydroxyphenylazo naphthols (I, II, III with R = o-OH in each case). Agreement between the theoretical calculations and

experimental spectra for I(R = o-OH) was obtained only after a non-planar model was used. Subsequently, Jacques et al.³⁵ applied the Perturbative Configuration Interaction using Localized Orbitals molecular orbital (PCILO MO) method and showed that a number of distinctly non-planar conformers of II(R = H) were possible. These workers also used the PCILO MO method to determine the theoretically optimum structures of conformers of 4-hydroxyazobenzene, 1-phenylazonaphthalene, and both tautomers of 4-phenylazo-1-naphthol (I, R = H).¹⁰

Chernova et al.³⁶ have discussed the UV spectra of tautomers of I and II (R = p-SO₃H in each case) with regard to the theoretical results determined by MO calculations, and an earlier report has discussed the electronic transitions of a large number of hydroxyazo compounds in the UV and visible regions.³⁷ In the latter report, MO calculations agreed with experimental spectra, and for I(R = H) the absorption band of the azo tautomer in the visible region was found to coincide with the calculated first $\pi \to \pi^*$ electronic transition.

2.1. Other tautomeric systems

Pyrazolone dyes are potentially tautomeric entities and Parent³⁸ has reviewed attempts to characterize their molecular structure. It has now been shown^{39,40} that the true structure of the coupling product of XX and XXI is compound XXII (see Scheme 1), although a previous NMR study⁴¹ reported that compound XXII

Scheme 1

 $(R = H, R_1 = C_6H_5, R_2 = CH_3)$ had the structure **XXIIA** while in solution in CDCl₃, CCl₄ or CH₂Cl₂ between 0 and -60 °C. Theoretical studies have also dealt with the structure and tautomerism of arylazoprazolones.^{42,43}

The incidence of a tautomeric equilibrium for hydroxyquinoline derivatives has been confirmed by theoretical and experimental studies. Molecular orbital calculations have indicated that the azo structure XXIII of 3-hydroxy-4-(phenylazo) quinoline is more stable than its hydrazone tautomer, but that the hydrazone structure XXIV of 4-hydroxy-3-(phenylazo)isoquinoline is more stable than its azo

tautomer.⁴⁴ Infrared and electronic spectral data later confirmed these predictions and further showed that electron withdrawing substituents in the *para* position of the phenyl ring of XXIII shift the equilibrium in favour of the hydrazone tautomer.⁴⁵ Russian workers have shown that the most stable form of 7-(4-antipyrylazo)-8-hydroxyquinoline in neutral solution has azo functionality, XXV.⁴⁶

Ultraviolet spectral data have demonstrated the occurrence of a tautomeric equilibrium in a number of substituted 3-pyridinols, XXVI.⁴⁷ The tendency for XXVI to adopt a hydrazone structure was reduced in the case of the corresponding N-oxides.⁴⁷

$$R_1$$
 OH
 R_1 , $R_2 = H$ —, Me —, R_3Ph —, R_4PhN_2 —

XXVI

Olenvich et al.⁴⁸ recently reported using MO calculations, supported by IR spectral data, to show that XXVII, XXVIII and XXIX exist in tautomeric equilibrium. A similar equilibrium was found to apply to the corresponding 1-substituted-2-naphthols and 6-substituted-3-Et₂NC₆H₄OH analogues.⁴⁸

Phenyl diazonium salts are capable of coupling with aliphatic compounds to yiel'd tautomeric moieties. The hydrazone tautomer is believed to be the stable product of coupling an aromatic diazonium compound with a methylene group of a ketone⁴⁹ or a β -diketone^{50.51} and also of keto-esters such as ethyl acetoacetate⁵² (see Scheme 2).

Scheme 252

Experimental evidence in the form of IR spectral⁴⁹ and NMR⁵² data, as well as a polarographic study,⁵¹ have confirmed this proposal.

The reaction of benzenediazonium chlorides with certain aromatic dicarbonyls has also yielded products with hydrazone functionality, e.g. Scheme 3.53

In addition, the condensation product of phenylhydrazine and 1,2,3-tricarbonyl compounds is believed to exist preferentially in the hydrazone form.^{54,55}

3. ENVIRONMENTAL FACTORS

Scheme 3

Although structural factors play a significant role in determining the tautomeric equilibrium, the medium containing the molecules can also exert a strong influence. Thus changing the environment of a tautomeric system can often cause dramatic changes in equilibrium. For example, the equilibrium of XXXIV has been shown to be placed in favour of the hydrazone tautomer by aggregation, by increasing solution acidity and by more nucleophilic solvents. ^{56,57} In the gas phase, where environmental factors are essentially eliminated, the equilibrium of XXXIV appears to fully favour the azo tautomer. ⁵⁷ It should be noted that studies of azo-hydrazone tautomerism in solution can be complicated by aggregation ^{11,58} and it has been suggested that the hydrazone tautomer is more susceptible to aggregation than the azo tautomer. ⁵⁹

3.1. The effect of solvents

The role of the solvent in determining the extent of the tautomeric equilibrium can be quite significant. For example. Korewa and Urbanska have reported that I(R = o-Cl) was present as 100% azo compound in acetone but as 100% hydrazone in benzene. Contrasting with this, they found I(R = o.p-dichloro) to be solely in the azo form in both acetone and benzene, which indicates the overriding nature of the substituent effect in this case. The state of the tautomeric equilibrium for a total of 14 derivatives of I in a variety of solvents has been described by I-orewa and I-orewa and I-orewald I-o

Specific polar or H-bonding interactions are believed to be important determinants of the state of the tautomeric equilibrium, but the exact way in which these interactions operate is often obscure. After applying the Hückel MO method to the problem, Kuder¹⁸ generalized that the formation of inter- and intramolecular H-bonds stabilizes the hydrazone tautomer of hydroxyarylazo compounds. Experimentally it is found that increasingly polar solvents (non-H-bonding) tend to favour the more polar hydrazone form of ortho and para hydroxyazo compounds.⁶¹ However, in the case of the para derivatives (I) a complication arises because the formation of H-bonds with suitable solvents stabilizes the azo form, since the —OH group of the azo tautomer is able to form a stronger H-bond than the —NH group of the hydrazone.¹⁴

The prototropic properties of the solvent are known to influence the position of equilibrium⁶⁰ and Hempel et al.⁶² reported that certain protic solvents (e.g. ethanol) tended to favour the hydrazone form of I(R = para substituent). On the other hand, Kishimoto et al.¹⁹ found that the tautomeric equilibrium of derivatives of I(R = para substituent) was displaced towards the azo form in pyriaine, acetone, ethanol and methanol, but towards the hydrazone in chloroform and acetic acid. The displacement was based on the equilibrium in benzene as standard.

Reeves et al.⁶³ have suggested that the effect of cavity formation energy on the tautomeric equilibrium may dominate the effect of the establishment of specific polar interactions between the tautomeric compound and solvent. By way of example, they postulated that the hydrazone tautomer of XXXVII is able to reside in a solvation cavity in water which has a lower free energy than the cavity required for the azo tautomer.⁶³ Previously Reeves and Kaiser had been unable to correlate bulk solvent properties, such as dielectric constant, with the position of equilibrium of a series of 4'-substituted 2- and 4-arylazo-1-naphthol sulphonates.⁶⁴ They found that in neat solvents, the equilibrium depended on the solvent structure. For neat solvents capable of forming a three dimensional structure, e.g. water or formamide, the hydrazone form was favoured. In two dimensional or unstructured solvents, e.g. simple alkyl alcohols or N-methylformamide, the azo tautomer predominated. In binary aqueous—organic solvent mixtures the microscopic environment of the dye in the solvent matrix was the determining factor. The authors suggested that when added to an aqueous solution of the dye, the organic co-solvent selectively solvates

the hydrophobic portion of the dye molecule and the state of the equilibrium is thus influenced by this 'microenvironment' around the molecule. Misuishi et al. arrived at the same conclusions after studying the tautomerism of I(R = H) in organic solvents containing water.⁶⁵

Thermal influences on the tautomeric equilibrium were described by Saeva, ¹⁷ who used NMR to examine compounds I and II (R = p-OCH₃ in each case) in solution in acetone- d_6 . Raising the temperature from -21 to 20°C for I(R = p-OCH₃) and from 20 to 40°C for II(R = p-OCH₃) shifted the equilibrium towards the azo tautomer in each case. Saeva ¹⁷ calculated thermodynamic parameters at 20°C and stated that in each system the enthalpy component of the free energy favoured the hydrazone tautomer but the entropy term favoured the less polar azo form. Thus the difference in tautomeric behaviour between systems I and II (R = p-OCH₃ in each case) can be ascribed to the dominance of the entropy and enthalpy terms for compounds I and II (R = p-OCH₃ in each case) respectively. Bekarek et al. ⁴¹ had previously reported that the disubstituted naphthol derivative XXXV in solution in methylene chloride was in a tautomeric equilibrium over the temperature range -75 to 31.5°C, but that only the hydrazone tautomer was present below -80°C.

3.2. The effect of macromolecules

The effect of polymers on the tautomeric equilibrium of hydroxyazo compounds is of practical significance because many commercial applications of these compounds involve their incorporation in polymer substrates as colourants. However, less is known about the effects of polymers than of solvents, although the type of polymer concerned appears to be an important factor in most cases.

Several studies have dealt with the effects of polymers on tautomeric compounds in solution. For example, an aqueous solution of $I(R = p-SO_3Na)$ was found by Matsui and Mochida⁶⁶ to become more acidic as increasing amounts of α - or β -cyclodextrin were added to the solution. These workers surmised that the starch formed a non-polar, aprotic microenvironment around the dye molecules which shifted the equilibrium from the less acidic hydrazone form to the more acidic azo

tautomer. Previously, Korewa and Nesterowicz⁶⁷ had demonstrated that azo compounds, e.g. 4-arylazophenols, are more acidic than those containing a proportion of hydrazone tautomer, e.g. 4-arylazo-1-naphthols. However, the binding of XXXVI to proteins such as avidins and serum albumins in aqueous solution displaces the tautomeric equilibrium towards the hydrazone form.^{68,69}

The equilibrium of the tautomeric dye XXXVII has been influenced by certain surfactants at concentrations below their CMCs. 70 As the surfactants were added to an aqueous solution of the dye, dye-surfactant aggregates formed in which surfactant was in a slight excess over dye and the tautomeric equilibrium was shifted in favour of the azo tautomer. The microenvironment of the dye within these aggregates was largely non-aqueous, in contrast to the bulk environment in the bath.

Diffuse reflection spectroscopy has been used to study the tautomeric equilibrium of hydroxyaryl azo dyes in crystalline NaCl⁷¹ and on polymer substrates. ^{72,73} Dehari et al. ⁷¹ reported that both tautomers of a number of substituted 1-phenylazo-2-naphthols (II) were present when dry samples of the dyes were ground with NaCl. Furthermore, they demonstrated that increasing the temperature of the system shifted the equilibrium in some cases, e.g. towards the azo tautomer for II(R = p-NO₂) and towards the hydrazone tautomer for II(R = p-NO₂). However, decreasing the dye concentration (1·0 \rightarrow 0·01%) favoured the hydrazone tautomer in every instance and this was related to the possibility that at lower concentrations a greater proportion of the dye is capable of being well dispersed and adsorbed on to the highly polar surface of the salt crystals. When the same dyes were applied to filter paper, tautomeric equilibrium changes were observed in certain cases after exposure to a high humidity environment. ⁷² The direction of the

equilibrium change again depended on the position and nature of substituents. For example, the moist environment favoured the azo tautomer of $II(R = o \cdot NO_2)$ and the hydrazone form of $II(R = p \cdot NO_2)$. A later study 3 used the same dyes but employed less hygroscopic substrates than cellulosic filter paper. The substituted 1-phenylazo-2-naphthols (II) were deposited on such fibrous polymers as polypropylene, polyacrylonitrile, poly(ethylene terephthalate), and nylon-6,6, and their diffuse reflection spectra compared with the absorption spectra determined in solvents considered to be models of the above polymers, viz. n-hexane, acrylonitrile, methyl benzoate and formamide respectively. From the similarity of these spectra, the authors concluded that the 'nature' of the fibres was the major factor affecting the equilibrium, and that the effect of moisture was small in the case of the non-hygroscopic substrates. A Hempel and Viola 4 have also described the use of diffuse reflection spectroscopy for the determination of the tautomeric fraction of a number of hydroxyazo compounds (I) present in polyamide fibres and films.

3.3. Crystalline solid state studies

The elucidation of the molecular structure of tautomeric entities in the solid crystalline form has received attention of late. Three dimensional diffractometry at room temperature revealed that $H(R = o\text{-NO}_2, p\text{-Cl})$ is an essentially planar molecule with hydrazone functionality.⁷⁵ In addition the magenta colourant, Pigment Red 31 (XXXVIII) has been characterized as having a hydrazone structure in the solid state.⁷⁶

XXXVIII Pigment Red 31

Kobelt et al. 77 studied the crystal structure of Pigment Brown 1, XXXIX, using X-ray methods and reported that neither the hydrazone nor the azo form alone could fully account for the observed bond relationships. They added that the molecule could be regarded as being a completely conjugated planar system stabilized by intramolecular H-bonds.

XXXIX Pigment Brown I

Monahan and Flannery⁷⁸ have indicated that intermolecular H-bonds are present in crystalline hydroxyazo compounds such as II(R = H), with the molecular structure being predominantly hydrazone. Whitaker⁷⁹ later proposed that azo pigments derived from II have a crystal structure consisting of hydrazone tautomers stabilized by intramolecular H-bonds and intermolecular Van der Waals forces.

Infrared spectral data for o.o'-dihydroxyazobenzene (XXXX) have indicated that both tautomers are present in the solid state, ⁸⁰ and a conformational analysis of XXXX has taken this into account.⁸¹

3.4. Gas phase studies

From the few studies of gas phase tautomerism that have appeared in the literature it would seem that the absence of intermolecular interactions generally favours the azo tautomer. Only the azo tautomer of compound XXXIV has been observed in the gas phase.⁵⁷ A similar result was found for a number of monosubstituted derivatives of II,⁸² although these compounds show hydrazone functionality in solution and in the solid state.^{61.83} However, a recent report on the mass spectra of a number of azo dyes of general structure XXXXI has claimed to have detected ions arising from both azo and hydrazone tautomers.⁸⁴

$$\begin{array}{c|c}
R & OH \\
N & \longrightarrow R_1 \\
\longrightarrow & NH \\
XXXXI
\end{array}$$

4. THE EFFECT ON TAUTOMERISM ON CHEMICAL REACTIVITY

The fact that hydroxyarylazo compounds are capable of existing in either the azo or hydrazone form means that observed reactions will depend upon the tautomers present. A typical example is a report by Cardogan et al., 85 who found that only the hydrazone tautomers of phenylazonaphthols were capable of nitrosation with p-chlorobenzoylnitrite. No reaction was observed for azobenzene of 4-phenylazo-1-methoxynaphthalene, which cannot exist as hydrazones. 85 Previously, Desai and Giles 6 had hypothesized that the initial step in the oxidation (by common oxidants) of azo dyes in aqueous media was one of hydrolytic attack on the C=N bond of the hydrazone tautomer of the dye. Other reports discuss such properties as charge transfer. 87 metal complexation 88.89 and chelation 90 with regard to azo-hydrazone tautomerism.

4.1. Photochemistry

Because of the widespread application of the hydroxyarylazo compounds as dyes and colourants, many studies of the chemical reactivity of the tautomeric systems have been concerned with their photofading. Griffiths and Hawkins have suggested that a reaction between singlet excited oxygen and the hydrazone tautomers of dyes of the general structure of I and II is responsible for their photodegradation. 91-93 Kuramoto and Kitao⁹⁴ reached the same conclusion after studying the photofading of a number of substituted azo dyes (II) in methanolic solution, although they later reported that compounds II. R = o- or p-NO₂, may fade reductively. ⁹⁵ Mallet and Newbold⁹⁶ have maintained that reduction of the hydrazone form is the most important mechanism leading to the photodegradation of phenylazo-\(\beta\)-naphthol dyes (II) on polypropylene. In spite of this, these workers did note that oxidation was possible, especially when oxygen was available. 96 Previously, van Beek ct al. 97 had suggested the possibility of photoreduction of both tautomers of hydroxyarylazo dyes in aqueous and ethanolic solutions by H-abstraction from a suitable donor (e.g. D.L-mandelic acid). However, Kitao et al. 98 surmised that the hydrazone tautomer was more susceptible to photodegradation because the photofading resistance of ohydroxyazobenzene (X) decreased upon annellation of the phenol portion of the molecule (i.e. increase in proportion of hydrazone tautomer present).

Hempel et al. examined the fading of dyes of general structure I, II and III (R = p-substituent) in polyamide films and fibres^{20,74} and reported that the substituents, R, influenced the rate of fading of the tautomers. The fading rate of the azo form of I (R = p-substituent) was increased by electron donating substituents (R), while that of the hydrazone tautomer was increased by electron acceptors.²⁰

Although a chemical reaction might be specific to a particular tautomer, it would proceed to completion if carried out in solution due to the ability of the equilibrium to adjust as one tautomer is consumed. However, in substrates where the tautomeric forms are separate and immobile, and therefore incapable of interaction, one should

observe a change in the state of the equilibrium as a tautomer-specific reaction proceeds. Such a situation was reported by Inukai, ⁹⁹ who studied the fading of dyes **XXXXII** and their oligomers (d.p. = 2-10) in poly(methyl methacrylate) film.

For the oligomers (which faded more rapidly than the monomeric dyes), the proportion of hydrazone tautomer decreased markedly as fading progressed. However, the tautomeric equilibrium remained at a virtually constant level in the case of the monomeric dyes, in spite of their incorporation in the solid polymer substrate.

Another form of photochemical difference between the tautomers of phenylazonaphthols has been described by Griffiths. He classified both tautomers of these compounds as 'donor-acceptor chromogens'. However, the direction of charge migration that accompanies electronic excitation to the first excited state is different for each tautomer. This is demonstrated in the diagrams below by the arrows which show the direction of charge migration for excitation to the first excited state.

Griffiths has also shown that for a dye which can exist in two forms in equilibrium, the frequency difference between their visible absorption bands exhibits a linear relationship with Hammett σ substituent constants.¹⁰¹ He demonstrated this dependence with the azo-hydrazone tautomeric forms of a number of substituted 4-phenylazo-1-naphthols (I).

4.2. Photochromism

A well-known photochromic reaction of azo compounds is $trans \rightarrow cis$ isomerization. For hydroxyazo compounds capable of azo-hydrazone

tautomerism, the photochromic $trans \rightarrow cis$ isomerization depends on the state of the tautomeric equilibrium. The nitro derivative II $(R = p-NO_2)$ exists almost completely in the hydrazone form and thus shows no photochromic behaviour.¹³

Fischer and Frei¹⁰³ observed that the *trans* isomer of the azo tautomer of I(R = H) could be converted to the less stable *cis* form when its alcoholic solution was irradiated at -140 °C. Upon warming $(-135 \rightarrow -90$ °C), the *cis* isomer thermally reverted to the *trans* form via the phenylhydrazone tautomer. The hydrazone form could not be implicated in any direct photoconversion.¹⁰³

 $Trans \rightarrow cis$ isomerization of the azo form of II(R = H) has been studied by a dual-beam picosecond absorption spectroscopic technique. The time constant for the reaction was found to increase with increasing solution viscosity.

The photoinduced $trans \rightarrow cis$ isomerization of the dyes XXXXIII has been studied by Russian workers. Activation energies at pH > 10 varied from 5.7 to 23.6 kcal/mol, but these values could not be correlated with the nature or position of the substituents. 106

$$HO_3S$$
 OH N R_2 R_2

4.3. Acid-base behaviour

The protonation equilibrium of a tautomeric compound is exemplified by I(R = H) in Scheme 4. In alkaline conditions, hydroxyarylazo compounds are capable of behaving as weak acids. The presence of a strong intramolecular H-bond in the case of the *ortho* derivatives (e.g. II) makes them much weaker acids than their para isomers (e.g. I). Griffiths¹⁰¹ has suggested that at high pH each tautomer ionizes to a common anion as shown in Scheme 4. However, Trotter¹⁰⁷ used laser-Raman spectroscopy with supportive IR spectroscopy to examine a number of hydroxyazo compounds (including I and II (R = H)) in acidic and basic aqueous media and reported that at pH = 12 the ionized molecules had the form of the azo anion. Saito et al.¹⁰⁸ have claimed that in basic conditions, the anion of I and II(R = H) does exist as a resonance hybrid, but that the azo form of the anion is the more favoured canonical form.

Reeves¹⁰⁹ proposed that the protonated phenylazonaphthols exist as resonance stabilized azonium ions (see upper Scheme 4). However, a theoretical study by

Bigelow¹¹⁰ has shown that for 2-naphthol derivatives (II) the protonated hydrazone is the more likely form of the azonium ion.

Simov et al.¹¹¹ reported that spectrophotometric data and pK_a values of 16 o, o'-dihydroxyazo dyes indicated a tautomeric equilibrium for the dyes examined. Schreiber et al.¹¹² found a linear relationship between the pK_a of dyes of general structure I and the Hammett constant σ of the substituents R. Deviations from this relationship in the case of $I(R = p\text{-CN}, p\text{-CH}_2\text{CH}_3, p\text{-SO}_2\text{CH}_3 \text{ and } p\text{-NO}_2)$ were ascribed to a high concentration of hydrazone tautomer.¹¹² It has been shown that the azo form is more acidic than the corresponding hydrazone tautomer.^{66,67}

REFERENCES

- 1. A. KEKULÉ and C. HIDEGH, Chem. Ber., 3, 233 (1870).
- 2. C. LIEBERMANN, Chem. Ber., 16, 2858-64 (1883).
- 3. T. ZINCKE and H. BINDEWALD, Chem. Ber., 17, 3026 (1884).
- 4. J. T. HEWITT and H. A. PHILLIPS, J. Chem Soc., 79, 160-7 (1901).
- 5. N. V. Sidgwick, *The organic chemistry of nitrogen* 3rd edn., revised by I. T. Millar and H. D. Springall. pp. 580-5, Oxford, Clarendon Press (1966).
- 6. H. ZOLLINGER, Azo and diazo chemistry, pp. 322-7. New York, Interscience (1961).
- 7. R. Kuhn and F. Bar, Annalen, 516, 143-55 (1935).
- 8. S. MILLEFIORI and F. GUERRERA, Ricerca Sci., 39 (7-9), 612-15 (1969); Chem. Abs., 73, 34620z.
- 9. 1. YA. BERSHTEIN and O. F. GINZBURG, Usp. Khim., 41, 177 (1972); Russ. Chem. Revs. 41, 97-110 (1972).
- 10. A. Goursot, P. Jacques and J. Faure, Chem. Phys., 20(3), 319-29 (1977).
- 11. R. A. Cox and E. Buncel, in The chemistry of the hydrazo, azo and azoxy groups, ed. S. Patai, pp. 838-44. London, John Wiley & Sons (1975).
- 12. S. Millefiori, F. Zuccarello, A. Millefiori and F. Guerrera, Tetrahedron, 30(6), 735-8(1974).
- 13. A. BURAWOY, A. G. SALEM and A. R. THOMPSON, J. Chem. Soc., 4793-8 (1952).
- 14. A. BURAWOY and A. R. THOMPSON, J. Chem. Soc., 1443-7 (1953).
- 15. S. MILLEFIORI and S. FASONE, Boll. Sedute Accad. Gioenia Sci. Natur. Catania, 10(8), 733-40(1971); Chem. Abs., 78, 28946x.
- 16. J. Schreiber, J. Socha and K. Rothschein, Collect. Czech. Chem. Commun., 35(3), 857-66 (1970).
- 17. F. D. SAEVA, J. Org. Chem., 36 (24), 3842-3 (1971).
- 18. J. E. Kuder, Tetrahedron, 28(7), 1973-81 (1972).
- 19. S. KISHIMOTO, S. KITAHARA, O. MANABE and H. HIYAMA, J. Org. Chem. 43 (20), 3882-6 (1978).
- 20. R. HEMPEL, H. VIOLA, J. MORGENSTERN and R. MAYER, Faserforsch. Textilicch., 29 (3), 190-3 (1978).
- 21. E. E. KOSTYUCHENKO, V. F. TRAVEN, R. A. MKHITAROV, N. F. MENSHIKOVA and B. I. STEPANOV. Zh. Org. Chim., 15 (4), 884-5 (1979); Chem. Abs., 91, 22391j.
- D. Habži, J. Chem. Soc., 2143-50 (1956).
- 23. L. SKULSKI and D. MACIEJEWSKA, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 26 (9), 655-60 (1978); Chem. Abs., 90, 188493y.
- 24. L. SKULSKI and J. KLEPS, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 21 (11), 859-71, (1973); Chem Abs., 80. 65304y.
- 25 E. Hofer and H. Huffmann, Tetrahedron Lett., 35, 3241-4 (1971).
- 26. P. Juwick and B. Sundby, Acta. Chem. Scand., 27(5), 1645-52 (1973).
- 27. G. V. KVITKO, E. L. KUZIN and V. I. NOVIKOV, Teor. Eksp. Khim., 11 (6), 754-61 (1975); Chem. Abs., 84. 89378i.
- H. RAU, Ber. Bunsenges, Phys. Chem., 72 (5), 637-43 (1968)
- 29. H. RAU, Ber. Bunsenges. Phys. IChem., 75 (12), 1343-47 (1971).
- 30. D. Gegiou and E. Fischer, Chem. Phys. Lett., 10 (2), 99-101 (1971).
- 31. Y. Matsunaga and M. Shimane, Bull. Chem. Soc. Jap., 45 (1), 295-6 (1972).
- 32. R. N. Nurmukhametov, O. I. Betin, G. T. Khachaturova and D. N. Shigorin, Zh. Prikl. Spektrosk., 27 (3), 464-7 (1977); Chem Abs., 88, 21538p.
 33. P. JACQUES, H. STRUB, J. SEE and J-P. FLEURY, Tetrahedron, 35 (17), 2071-3 (1979).
 34. L. A. Gribov, Yu. M. Dedkov and A. V. Kotov, in Str. Mol. Kvantovaya Khim., ed. A. I. Brodskii,
- pp. 150-5. Kiev, Naukova Dumka (1970); Chem. Abs., 74, 93003u.
- 35. P. JACQUES, A. GOURSOT and J. FAURE, Chem. Phys., 26 (2), 301-8 (1977).
- 36. R. K. CHERNOVA, I. K. PETROVA and K. I. Gur'ev, Zh. Obshch. Khim., 44(12), 2753-8 (1974); Chem Abs., 82, 97505x.
- 37. D. SIMOV and ST. STOYANOV, J. Mol. Struct., 19 (1), 255-74 (1973).
- 38. R. A. PARENT, J. Soc. Dvers Colourists, 92 (10), 368-70 (1976).
- 39. R. A. PARENT, J. Soc. Dyers Colourists, 92 (10), 371-7 (1976).
- 40. M. RAGAB and N. S. HABIB, Sci. Pharm., 46 (4), 254-69 (1978); Chem Abs., 90, 203229n.
- 41. V. Bekarek, I. Dobas, J. Socha, P. Vetesnik and M. Vecera, Collect. Czech. Chem. Commun., 35 (5), 1406–14 (1970).
- 42. J. Arriau, J. P. Campillo, J. Elguero and J. M. Pereillo, Tetrahedron, 30 (11), 1345-52 (1974).
- 43. J. Arriau, J. P. Campillo, J. Deschamps, and P. Parmentier, Tetrahedron, 30 (11), 1353-63 (1974).

- 44. B. E. ZAITSEV, G. V. SHEBAN and K. M. DYUMAEV, Khim. Geterotsikl.: Soedin., (7), 952-7 (1974); Chem Abs., 81: 104536t.
- 45. B. E. Zaitsev, G. V. Sheban, N. A. Andronova and K. M. Dyumaev, Khim. Geterotsikl., Soedin, (11), 1522-4 (1974); Chem. Abs., 82, 72295r.
- 46. N. G. SMAGLYUK, Sh. T. TALIPOV, Ch. IBRAIMOV and A. KHODZHAEV, Uzb. Khim. Zh., (3), 12-17 (1979); *Chem. Abs.* 91, 210725v.
- 47. K. M. DYUMAEV and R. E. LOKHOV, Khim. Geterotsikl. Soedin., (6), 810-12 (1973); Chem. Abs., 79, 104577r.
- 48. N. L. OLENVICH, G. F. TANTSYURA, E. P. LOZITSKAYA, G. I. SAVENKO and N. M. MALAKHOVA, Vopr. Stereokhim., 7, 62-7 (1978); Chem Abs. 91, 38673p.
- 49. E. M. TANNER, Spectrochim. Acta., 15, 20-6 (1959).
- 50. A. MUSTAFA, W. ASKER, A. H. HARHASH, N. A. MESSIHA and M. H. ELHAGDI, Tetrahedron, 21, 217–25 (1965).
- 51. W. U. MALIK, R. N. GOYAL, V. K. MAHESH and V. VERMA, J. Electroanal. Chem. Interfacial Electrochem., 62 (2), 451-3 (1975).
- 52. A. K. Bose and I. Kugajevsky, Tetrahedron, 23 (3), 1489-97 (1967).
- 53. V. R. RANADE and R. A. KULKARNI, J. Indian Chem. Soc., 56 (4), 393-5 (1979).
- 54. A. MITCHELL and D. C. NONHEBEL, Tetrahedron, 35 (17), 2013-9 (1979).
- 55. J. Arriau, J. P. Campillo, J. Deschamps, G. Tarrago and R. Jacquier, Bull. Soc. Chim. Fr., (4)
- (Pt. 2), 1398-403 (1973).
 56. B. E. ZAITSEV, G. V. SHEBAN, K. M. DYUMAEV and L. D. SMIRNOV, Khim, Geteroisikl. Soedin., (2), 224-9 (1973); Chem. Abs., 78, 123507p.
- 57. B. E. Zaitsev, G. V. Sheban, L. D. Smirnov and K. M. Dyumaev, Khim. Geterotsikl. Soedin., (10), 1364-70 (1974); Chem. Abs., 82, 87643b.
 58. A. R. Monahan and D. F. Blossey, J. Phys. Chem., 74 (23), 4014-21 (1970).
 59. A. R. Monahan, A. F. Deluca and A. T. Ward, J. Org. Chem., 36 (24), 3838-42 (1971).

- R. Korewa and H. Urbanska, Rocz. Chem., 46 (11), 2007-19 (1972).
 K. J. Morgan, J. Chem. Soc., 2151-9 (1961).
- 62. R. HEMPEL, H. VIOLA, J. MORGENSTERN and R. MAYER, J. Prakt. Chem., 318 (6), 983-92 (1976).

- 63. R. L. REEVES, M. S. MAGGIO and L. F. COSTA, J. Am. Chem. Soc., 96 (18), 5917-25 (1974).
 64. R. L. REEVES and R. S. KAISER, J. Org. Chem., 35 (11), 3670-5 (1970).
 65. M. MISUISHI, R. KAMIMURA, M. IEDA, K. SHINOHARA and N. ISHII, Sen'i Gakkaishi, 32 (9), T382-8 (1976).
- 66. Y. MATSUI and K. MOCHIDA, Bull. Chem. Soc. Jap., 51 (3), 673-6 (1978).
- 67. R. Korewa and M. Nesterowicz, Rocz. Chem., 48 (12), 2245-51 (1974); Chem. Abs., 82, 160924a.
- 68. J. C. Merlin and E. Thomas, Proc. 5th Int. Conf. Raman. Spectrosc., 208-9 (1976).
- 69. H. TERADA, B.-K. KIM, Y. SAITO and K. MOCHIDA, Spectrochim. Acta, 31A (7), 945-9 (1975).
 70. R. L. REEVES, R. S. KAISER and H. W. MARK, J. Colloid Interface Sci., 45, 396-405 (1973).
 71. C. DEHARI, Y. MATSUNAGA and K. TANI, Bull. Chem. Soc. Jap., 43 (11), 3404-9 (1970).

- 72. Y. MATSUNAGA and N. MIYAJIMA, Bull. Chem. Soc. Jap., 44 (2), 361-4 (1971).
- 73. Y. Matsunaga and N. Miyalima, Bull. Chem. Soc. Jap., 45 (11), 3345-9 (1972).
- R. Hempel and H. Viola, Acta Polym., 30 (7), 450-2 (1979).
 L. J. Guggenberger and G. Teufer, Acta. Crystallogr., B31 (3), 785-90, 1975.
- 76. C. H. Griffiths and A. R. Monahan, Mol. Cryst. Lig. Cryst., 33 (3-4), 175-87 (1976).
- 77. V. D. KOBELT, E. F. PAULUS and W. KUNSTMANN, Acta. Crystallogr., B28, 1319-24 (1972).
- 78. A. R. Monahan and J. B. Flannery, Chem. Phys. Lett., 17 (4), 510-13 (1972).
- 79. A. WHITAKER, J. Soc. Dyers Colourists, 94 (10), 431-5 (1978).
- 80. V. A. DEMENT'EV and A. V. KOTOV, Zh. Prikl. Spektrosk., 30 (5), 878-83 (1979); Chem. Abs., 91. 55756k.
- 81. G. P. Doroshina and L. A. Gribov, Izv. Timirvazevsk. S-kh. Akad. (3), 175-82, 1979; Chem Abs. 91, 56201n.
- 82. T. KOBAYASHI, K. KURIHARA and K. HIROSE, Bull. Chem. Soc. Jap., 45 (12), 3551-5 (1972).
- 83. 1. SAITO, Y. BANSHO and K. Ozawa, Kogyo Kagaku Zasshi, 72(5), 1149-55 (1969); Chem. Abs., 72, 80314e.
- 84. E. E. KOSTYUCHENKO, V. F. TRAVEN and B. I. STEPANOV, Zh. Obshch. Khim., 48(12), 2797-8 (1978); Chem Abs. 90, 123032c.
- 85. J. I. G. CARDOGAN, C. D. MURRAY and J. T. SHARP, J. Chem. Soc. Perkin. Trans. 2 (6), 546-50
- 86. N. F. DESAI and C. H. GILES, J. Soc. Dvers Colourists, 65 (12), 639-49 (1949).

- 87. P. J. Cressman, G. C. Hartmann, J. E. Kuder, F. D. Saeva and D. Wychick, J. Chem. Phys., 61 (7), 2740-6 (1974).
- YU. M. DEDKOV, A. N. ERMAKOV, N. V. KORSAKOVA and N. I. LEVKINA, Zh. Neorg. Khim., 26(6), 1530-42 (1977); Chem Abs., 87, 59140v.
- 89. A. V. Korshunov, V. M. Mozharova, V. E. Volkov and V. V. Kind, in 6th Spektrosk. Tr. Sib. Soveshch. 1968, ed. N. A. Prilezhaeva, pp. 235-7. Moscow, Nauka (1973). Chem Abs., 79, 98799w.
- 90. L. SKULSKI and A. PLUCINSKI, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 23 (12), 1017-28 (1975); Chem. Abs., 84, 149974n.
- 91. J. GRIFFITHS and C. HAWKINS, J. Chem. Soc. Chem. Comm., (8), 463-4 (1972).
- 92. J. GRIFFITHS and C. HAWKINS, J. Chem. Soc. Perkin Trans., 2(6), 747-52 (1977).
- 93. J. Griffiths and C. Hawkins, J. Appl. Chem. Biotechnol., 27 (10), 558-64 (1977).
- 94. N. Kuramoto and T. Kitao, Nippon Kagaku Kaishi, (2), 258-63 (1977); Chem Abs., 86, 141593h.
- 95. N. KURAMOTO and T. KITAO, J. Soc. Dyers Colourists, 96 (10), 529-34 (1980).
- 96. V. N. MALLET and B. T. NEWBOLD, J. Soc. Dyers Colourists, 90 (1), 4-7 (1974).
 97. H. C. A. VAN BEEK, P. M. HEERTJES, C. HOUTEPEN and D. RETZLOFF, J. Soc. Dyers Colourists, 87 (3), 87-92 (1971).
- 98. T. KITAO, Y. WATADA, M. MATSUOKA and K. KONISHI, Nippon Kagaku Kaishi, (5), 939-43 (1974).
- 99. Y. INUKAI, Nippon Kagaku Kaishi, (12), 2161-5 (1975).
- 100. J. Griffiths, Colour and constitution of organic molecules, p. 191. London, Academic Press (1976).
- J. Griffiths. J. Soc. Dyers Colourists, 88 (3), 106-9 (1972). 102. D. L. Ross and J. Blanc, in Techniques of chemistry, Vol. 3, ed. G. H. Brown, pp. 509-12. New
- York, Wiley (1971).
- 103. E. FISCHER and Y. F. FREI, J. Chem. Soc., 3159-63 (1959).
- 104. T. KOBAYASHI, E. O. DEGENKOLB and P. M. RENTZEPIS, J. Phys. Chem., 83 (19), 2431-4 (1979).
- 105. A. K. Chibisov, L. N. Rygalov, Yu. M. Dedkov, A. V. Karyakin and A. N. Ermakov, Zh. Prikl. Spektrosk., 14 (5), 826-32 (1971); Chem Abs., 75, 62812y.
- 106. L. N. RYGALOV, YU. M. DEDKOV, A. V. KARYAKIN and A. K. CHIBISOV, Zh. Prikl. Spektrosk., 20 (3), 470-2 (1974); Chem Abs., 80, 145124e.
- 107. P. J. TROTTER, Appl. Spectrosc., 31 (1), 30-5 (1977).
- 108. Y. SAITO, B.-K. KIM and K. MOCHIDA, Bull. Chem. Soc. Jap., 49 (9), 2111-14 (1974).
- 109. R. L. REEVES, J. Am. Chem. Soc., 88 (10), 2240-7 (1966).110. R. W. BIGELOW, J. Phys. Chem., 80 (24), 2694-700 (1976).
- 111. D. Simov, N. Simeonova and S. Tomov, Izv. Khim., 11 (1), 160-8 (1978); Chem Abs., 91, 40874y.
- 112. J. Schreiber, J. Kulic, J. Panchartek and M. Vecera, Collect. Czech. Chem. Commun., 36 (9), 3399-403 (1971).
- 113. J. Griffiths, Chem. Soc. Reviews, 1, 481-93 (1972).